HOSSAM GHANEM

(24) 3.7 Implicit Differentiation(B)

Example 1

60 October 31, 2011

(4 points) Let $f(x) = x^3 \tan^2 x + \sqrt{\sec(2x)}$. Find f'(x).

Solution

$$f'(x) = 3x^{2} \tan^{2} x + x^{3} \cdot 2 \tan x \sec^{2} x + \frac{2 \sec(2x) \tan(2x)}{2\sqrt{\sec(2x)}}$$

Example 2 Find

 $\frac{xy^3}{1+\sec y} = 1+y^4$

Solution

$$\frac{xy^3}{1+\sec y} = 1+y^4$$

 $xy^3 = (1 + y^4)(1 + \sec y)$

 $xy^3 = 1 + \sec y + y^4 + y^4 \sec y$

 $y^3 + x \cdot 3y^2y$ = $\sec y \tan y$ y + $4y^3y$ + $4y^3 \sec y$ y + $y^4 \sec y \tan y$ y $y (3xy^2 - \sec y \tan y - 4y^3 - 4y^3 \sec y - y^4 \sec y \tan y) = -y^3$

 $y' = \frac{1}{3xy^2 - \sec y \tan y - 4y^3 - 4y^3 \sec y - y^4 \sec y \tan y}$

Example 3 Find $\frac{dy}{dx}$ if

 $\tan^3(xy^2 + y) = x$

Solution

 $\tan^3(xy^2 + y) = x$

 $3\tan^2(xy^2 + y)\sec^2(xy^2 + y) \cdot [y^2 + x \cdot 2yy + y] = 1$

 $y^{2} + y(2x + 1) = \frac{1}{3\tan^{2}(xy^{2} + y)\sec^{2}(xy^{2} + y)}$

 $y(2x + 1) = \frac{1}{3}\cot^2(xy^2 + y)\cos^2(xy^2 + y) - y^2$

 $y' = \frac{\frac{1}{3}\cot^2(xy^2 + y)\cos^2(xy^2 + y) - y^2}{2}$

Example 4

44 December 21, 2008

Find $\frac{dy}{dy}$

 $\frac{dy}{dx}$ and

 $\frac{d^2y}{dx^2}$

at x = 0, where $2y + \sin(xy) = 1$.

Solution

 $2y + \sin(xy) = 1$

at
$$x = 0$$

$$2y + 0 = 1 \qquad \Rightarrow y = \frac{1}{2}$$

$$2y + \sin(xy) = 1$$

$$2y + \cos(xy) \left[y + xy\right] = 0$$

$$2y' + y\cos(xy) + xy'\cos(xy) = 0$$

$$y \setminus [2 + x \cos(xy)] = -y \cos(xy)$$

$$y = \frac{-y\cos(xy)}{2 + x\cos(xy)}$$

at
$$\left(0, \frac{1}{2}\right)$$

$$y = \frac{-\frac{1}{2}\cos(0)}{2} = \frac{-\frac{1}{2}}{2} = -\frac{1}{4}$$

$$y' = \frac{\left[2 + x\cos(xy)\right]\left[-y'\cos(xy) + y\sin(xy)\left(y + xy'\right)\right] + y\cos(xy)\left[\cos(xy) - x\sin(xy)\left(y + xy'\right)\right]}{\left[-y'\cos(xy) + y\sin(xy)\left(y + xy'\right)\right]}$$

$$[2 + x\cos(xy)]^2$$

at
$$\left(0, \frac{1}{2}\right)$$
 $\Rightarrow y^{\setminus} = \frac{-1}{2}$

$$y^{\setminus \setminus} = \frac{[2+0]\left[\frac{1}{2}(1)+0\right] - \frac{1}{2}(1)[1-0]}{[2+0]^2} = \frac{1-\frac{1}{2}}{4} = \frac{\frac{1}{2}}{4} = \frac{1}{8}$$

Example 5

43 July 19, 2008

Find an equation of the normal line at x = 0 to the graph of $y^3 + y \sin(x) - \cos(xy^2) = 0$

$$y^3 + y\sin(x) - \cos(xy^2) = 0$$
at $x = 0$

$$y^3 + 0 - 1 = 0$$

$$\Rightarrow y = 1$$

$$3y^2y + y \cos x + y \sin x + \sin(xy^2) \cdot [y^2 + 2xyy] = 0$$

 $p(0,1)$

$$3y^{\setminus} + 1 + 0 + 0 = 0$$

$$y^{\setminus} = \frac{-1}{3}$$

$$m = 3$$
 , $p(0, 1)$

$$y - y_1 = m \left(x - x_1 \right)$$

$$y-1=3x$$

$$y - 3x - 1 = 0$$

Example 6

36 Dec 15, 2005

Find an equation of the normal line at x = 0 to the graph of $\sec^2(\pi + x) + \sin(xy) + y = 0$

Solution

$$\sec^{2}(\pi + x) + \sin(xy) + y = 0$$
at $x = 0$

$$\sec^{2}\pi + \sin 0 + y = 0$$

$$1 + y = 0 \Rightarrow y = -1$$

$$2\sec(\pi + x) \cdot \sec(\pi + x) \tan(\pi + x) + \cos(xy) [y + xy^{\setminus}] + y^{\setminus} = 0$$

$$p(0, -1)$$

$$2\sec(\pi) \cdot \sec(\pi) \tan(\pi) + \cos(0) [-1 + 0] + y^{\setminus} = 0$$

$$0 - 1 + y^{\setminus} = 0$$

$$y^{\setminus} = 1$$

$$m = -1 \quad \& \ p(0, -1)$$

$$y - y_{1} = m \ (x - x_{1})$$

$$y + 1 = -x$$

$$x + y + 1 = 0$$

Example 7

39 December 14, 2006

Find an equation of the tangent line to the curve of $2y + y^2 \tan x + \sin(x^2 y) - 2 = 0$ at x = 0

$$2y + y^{2} \tan x + \sin(x^{2}y) - 2 = 0$$
at $x = 0$

$$2y + 0 + 0 - 2 = 0$$

$$2y = 2 \Rightarrow y = 1$$

$$2y + 2yy \tan x + y^{2} \sec^{2} x + \cos(x^{2}y) [2xy + x^{2}y^{3}] = 0$$

$$p(0,1)$$

$$2y + 0 + 1 + [0] = 0$$

$$y = -\frac{1}{2}$$

$$m = -\frac{1}{2} \quad \& \quad p(0,1)$$

$$y - y_{1} = m(x - x_{1})$$

$$y - 1 = -\frac{1}{2}x$$

$$2y - 2 = -x$$

$$x + 2y - 2 = 0$$

Example 8

52 July 23, 2011 A

[4 Points] Find an equation of the normal line at x = 0 to the graph of $xy^2 + y\sin(x) + y^3 = 1$

$$xy^{2} + y\sin(x) + y^{3} = 1$$
at $x = 0$

$$y^{3} = 1 \rightarrow y = 1$$

$$y^{2} + x \cdot 2yy^{\setminus} + y^{\setminus}\sin(x) + y\cos(x) + 3y^{2}y^{\setminus} = 0$$

$$y(0, 1)$$

$$p(0,1) 1 + 0 + 0 + 1 + 3y = 0$$

$$1 + 0 + 0 + 1 + 3y = 0$$
$$y = -\frac{3}{2}$$

$$p(0,1)$$
 $m = \frac{2}{3}$

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{2}{3}x$$

Find y^{\setminus}	Find	$\frac{dy}{dy}$
Carlotte Contraction		$\alpha \mathbf{v}$

- $\underline{1} \qquad \sin(x^2 y^2) = x$
- $\frac{2}{\cos(x+2y)}=0$
- $3 x = \sin^2 y$
- $\underline{4} \qquad x^2 = \frac{\cos y}{1 + \csc y}$
- $\underline{5}$ $f(x) = \sqrt{2x+1} \sec^3(5-x^2)$ 41 July 19, 2007
- $\frac{6}{\sqrt{1+\sin^3(xy^3)}} = y$

9 December 12, 1996

- If y is a function of x defined implicitly by $cos(xy) + 2y + y^2 tan x = 3$ then find the equation of the tangent line to the graph of y when x = 0
- 2 6 9 May 1996 Find an equation of tangent line to the graph of $y + y^2 \sin x + \sin(xy) = 1$ at x = 0
- Find an equation of tangent lines to the graph of $x \sin y + \cos x + y^2 = 5$ when x = 0
- 4 15 December 1994
- Find the equation of the normal line (lines) to the graph $xy + \tan x + y^2 = 9$ at the points on the graph where x = 0
- 11 May 15, 1997 & 13 May 15, 1997
- Find an equation of the normal line to the graph of the following equation $x \sin y + xy + y \pi = 0$ at the point whose x-coordinate is 0
- Find the equation of the normal line to the graph $x^2y + \sin y = 2\pi$ at the point whose x-coordinate is 2π
- 7 Find $\frac{dy}{dx}$ if y is implicitly defined by $x \tan(\frac{y}{x}) 1 = 0$
- Find an equation of the tangent line to the curve $3y^3 + 4xy x^2 \sin y = 3$ at the point P(0,1)

22 December 7, 1999

<u>9</u> Find an equation of tangent line to the graph of $y + y^2 \tan x + \sin(xy) = 1$ at x = 0

33 May 6, 2004

Find an equation of tangent line to the graph of $tan^2(x) - cos(2x) - y^3 = 0$ <u>10</u> at the point whose x-coordinate is π

31 July 31st, 2003 <u>11</u>

Find an equation of the normal line to the graph of $y = x^2 + x \sin y + \frac{\pi}{2}$ at x = 0

- Find an equation of the normal line 12 at x = 0 to the graph of $y^3 + y \sin(x) - \cos(xy^2) = 0$
- 28 Dec 20, 2001 <u>13</u> Find an equation of the tangent line to the graph of $x^2y + \sin(xy + y^2) = x + 2$ at the point whose y-coordinate is 0
- Find an equation for tangent line to the graph of the function given by the equation

<u>14</u> $x \cos y + y \cos x = \frac{\pi}{2}$ at the point $(\frac{\pi}{2}, \frac{\pi}{2})$

11 August 11, 1994 A

<u>15</u> Find the equation of the tangent line to the graph of the equation $\sqrt{xy} + \tan(1 - x^2) = 1$ at the point whose x –coordinate is 1

7 June 17, 1993

<u>16</u>

Let y be a function of x defined implicitly by $x \sin 2y = y \cos 2x$ Find the equation

 $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ the normal line to the graph of y at

12 July 25, 1996, 1995 & 7 July 25, 1996

Find the equation of the tangent line to curve $1 + 16x^2y = \tan(x - 2y)$ at the point <u>17</u>

1 December 3, 1992

Find an equation for tangent line to the graph of the function given by the equation 18 $x \sin y + \cos x + y^2 = 5 \text{ when } x = 0$

- Find an equation of the tangent line to the graph of function $f(x) = \sec x \tan x + 1$ 19
 - 3 December 30, 1991
- <u>20</u> If $2y + \sin(xy) = -1 + \tan x$. Find the equation of the tangent line to the graph of y at x = 0
- Find the equation of normal line to the graph of the function given by the equation <u>21</u> $3y^4 + 4x - x^2 \sin x = 4$ at the point (1, 0)

10 June 6, 1994

Find an equation of the line normal to the graph of $cos(x + y) + x^2y^2 - x = 0$

at the point $\left(0, \frac{\pi}{2}\right)$

37 May 4, 2006

<u>22</u>

- <u>23</u> Find an equation of the normal line at x = 1, to the graph of $x^2y + \sin(xy - y) = 2.$
 - 46 August 1, 2009
- Find an equation of the normal line to the curve $\sec(x^2y) + \sqrt{x^2 + y} x = 3$ <u>24</u> at x = 0
- Find the equation of the normal line to the graph <u>25</u> $y + \sqrt{1 + xy} + \tan(xy) = 1$ at the point whose x-coordinate is 0
- 34 July 22, 2004 Find an equation for the tangent line to the graph of $y^2 = x^3y^2 - x \sin y$ 26 at the point $P(1,\pi)$
- 48 Sunday 9 May 2010
- Find an equation of the tangent line to the curve <u>27</u>

$$x^2y^2 - 2x = 4 - 4y$$

at the point (2, -2).

[4 marks]

49 July 24, 2010

28

(3 Points) Find an equation of the normal line to the graph of the equation $(x^2 + y^2)^2 = 5xy + 15$

at the point P(1,2).

- 50 22 December 2010
- (3 pts.) Suppose a curve is given by $x^2y + 5 = -\frac{1}{2}xy^3$. Find the slope of the tangent line to the curve at the point (2, -1)
- 51 8 May 2011
- 30 [3 pts.] Find an equation of the tangent line to the curve $x^3 + 2y^3 = 4xy + 2$. at the point P(2,1)
- 31 July 31st, 2003
- Find an equation of tangent line to the graph of $\sin^3(xy) + \pi = y + x$ at the point whose y-coordinate is 0
- 38 July 17, 2006 Find an equation of the normal line to the curve : $tan(xy) + \sqrt{x+y} = 1$ at x = 0
- $\frac{33}{4x} \quad \text{Find} \quad \frac{dy}{dx} \quad \text{if} \quad \tan xy = xy$
 - 31 July 31st, 2003
 - Find an equation of tangent line to the graph of $\sin^3(xy) + \pi = y + x$ at the point whose y-coordinate is 0

- $\sin^3(xy) + \pi = y + x$
at y = 0
- at y = 0 $x = \pi$
- $p(\pi,0)$
- $3\sin^2(xy)\cdot\cos(xy)\cdot[y+xy] = y+1$
- $p(\pi,0)$
- $0 = y + 1 \qquad \Rightarrow y = -1$
- $p(\pi,0) \qquad m=-1$
- $y y_1 = m(x x_1)$ $y - 0 = -(x - \pi)$
- $y + x + \pi = 0$

32

38 July 17, 2006

Find an equation of the normal line to the curve : $tan(xy) + \sqrt{x+y} = 1$ at x = 0

Solution

$$\tan(xy) + \sqrt{x + y} = 1$$
at $x = 0$

$$0 + \sqrt{y} = 1$$

$$\sec^2(xy) \cdot [y + xy] + \frac{1 + y}{2\sqrt{x + y}} = 0$$

$$p(0, 1)$$

$$1 \cdot [1 + 0] + \frac{1 + y}{2\sqrt{x + y}} = 0$$

$$1 \cdot [1+0] + \frac{1+y}{2(1)} = 0$$

$$2+1+y = 0$$

$$1$$

$$y = -3$$

$$p(0,1) , m = \frac{1}{3}$$

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{1}{3}x$$

$$3y - 3 = x$$

$$3y - x - 3 = 0$$

Find

if

tan xy = xy

$$\tan xy = xy$$

$$\sec^{2}(xy) \cdot [y + xy] = y + xy$$

$$y \sec^{2}(xy) + xy \sec^{2}(xy) = y + xy$$

$$xy \sec^{2}(xy) - xy = y - y \sec^{2}(xy)$$

$$y = \frac{y - y \sec^{2}(xy)}{x \sec^{2}(xy) - x}$$

$$= \frac{y(1 - \sec^{2}(xy))}{x(\sec^{2}(xy) - 1)}$$

